
Computer Networks 215 (2022) 109212

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

RoNS: Robust network function services in clouds
Huaqing Tu, Gongming Zhao ∗, Hongli Xu ∗, Yangming Zhao, Yuhang Qiu, Liusheng Huang
School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China

A R T I C L E I N F O

Keywords:
Network function
Failure
Fast recovery
Clouds

A B S T R A C T

In multi-tenant clouds, the traffic of tenants (e.g., enterprises) needs to be processed by network functions
(NFs), for security and business logic issues. Due to potential hardware failures and software errors, NFs may
break down. When encountering NF failures, we should consider two critical requirements for maintaining
cloud robustness: limited influence scope and fast failure recovery. Without considering these two requirements,
prior works based on deploying backup NF instances may result in large influence scope and long recovery
time when a failure occurs. To bridge the gap, this paper investigates how to build robust network function
services (RoNS) in multi-tenant clouds. Specifically, RoNS limits the number of tenants that each NF instance
will serve so as to control the influence scope of an NF failure, and schedule requests with the help of agents
designed in the data plane to achieve fast failure recovery. This is however a difficult undertaking. To solve this
problem, RoNS takes a two-phase approach: NF instance allocation and tenant request scheduling. For NF instance
allocation, we propose an efficient algorithm with bounded approximation factors based on the randomized
rounding method. For tenant request scheduling, we present a primal–dual-based algorithm with a superior
competitiveness ratio to solve it. We implement RoNS on a real testbed for experimental studies and use
simulations for large-scale investigation. Both experiment results and simulation results show the superior
performance of the proposed algorithms compared with other alternatives. For example, RoNS can cut down
the number of affected tenants by 60%, and reduce recovery delay from 1170 ms to 316 ms on average,
compared with existing failure recovery mechanisms based on deploying backup instances.
1. Introduction

With the development of virtualization technology [1], clouds can
achieve elastic scaling of resources and reduce management complex-
ity, thus more and more users migrate their businesses to clouds (e.g.,
Amazon Web Services [2] and Google Cloud Platform [3]). As the
scale of clouds grows, cloud vendors rely on a wide spectrum of
network function (NF) services, such as intrusion detection systems
(IDS), firewalls and load balancers, to ensure network security and
enhance tenants’ quality of service [4,5]. That is, cloud vendors provide
various network services to tenants (e.g., enterprises) with NF instances.

In practice, NF failures are common and usually incurred by some
abnormal events such as connectivity errors, hardware faults, and
overloads [6,7]. According to [7], the median time of two consecutive
failures is 7.5 h for firewalls while 5.2 h for load balancers. In addition,
the median time is only 20 min for intrusion detection and prevention
systems [7]. With such common NF failures, the availability of NFs can-
not always be guaranteed, which degrades the system robustness. When
encountering NF failures, we should consider two critical requirements
to maintain better cloud robustness. One is limited influence scope once
a failure occurs. In multi-tenant clouds, multiple tenants may share the

∗ Corresponding authors.
E-mail addresses: gmzhao@ustc.edu.cn (G. Zhao), xuhongli@ustc.edu.cn (H. Xu).

same NF instance to improve resource utilization. As an NF instance
fails, it will stop providing services to all served requests, which will
degrade the tenants’ QoS. Thus, we expect that the failure of a single
NF instance will not affect too many tenants’ QoS. To this end, we
should try to limit the number of tenants each NF instance will serve.
The other requirement is fast failure recovery. After an NF instance fails,
the traffic handled by the failed instance needs to be redirected to a
working instance, which may cause a service outage and degrade the
cloud robustness. Thus, when an NF failure occurs, we should restore
service for the affected requests as soon as possible.

To deal with NF failures, several efficient solutions have been
designed [8–11]. However, existing works often focus on rescheduling
affected requests under resource constraints, but ignore the above ro-
bustness requirements in clouds. Specifically, these works often deploy
backup instances first, and then reschedule the traffic from the failed
NF instance to a backup instance. For example, the authors [10] deploy
backup instances with the objective of minimizing the backup resource
consumption while considering the heterogeneous resource demand of
different NF instances. On the one hand, since they ignore the fact
that one NF instance may serve lots of tenants, it may cause 25%–57%
vailable online 22 July 2022
389-1286/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2022.109212
Received 26 March 2022; Received in revised form 13 June 2022; Accepted 18 Jul
y 2022

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:gmzhao@ustc.edu.cn
mailto:xuhongli@ustc.edu.cn
https://doi.org/10.1016/j.comnet.2022.109212
https://doi.org/10.1016/j.comnet.2022.109212
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.109212&domain=pdf

Computer Networks 215 (2022) 109212H. Tu et al.
of tenants affected by the failure of an NF instance (see Section 5),
resulting in large influence scope once a failure occurs. On the other
hand, after an NF instance fails, the centralized control plane needs
to select other backup NF instances for the traffic handled by the failed
instance, then recalculates scheduling strategy, and finally deploys the
corresponding rules in the data plane. That is, when a failure occurs, the
above works need to be aware of failures, compute new rules and install
them on switches [12], resulting in long recovery time. The experiment
results in Section 5 show that the recovery time may be more than
1000 ms. Without considering these two robustness requirements, the
above works may lead to poor tenants’ QoS in facing NF failures. Thus,
this paper focus on building robust network function services in clouds
while satisfying these two requirements.

We should note that although there are some works trying to build
robust services in the cloud, such as [13–16], they all have limitations.
For example, the work [13] proposes the link failure recovery mech-
anism through the fast failover group table feature provided by Open
Flow. Since the group table only supports monitoring the status of links
and cannot detect whether there is an NF failure, their methods cannot
handle NF failures. To deal with NF failures, the work [15] proposes
to deploy backup NF instances using network function virtualization
(NFV) technique. When an NF instance fails, the centralized control
plane needs to detect the NF failure first, then reschedules the traffic
from the failed instance to the backup one by deploying new forwarding
rules in the data plane. However, this method requires the centralized
control plane to participate in the recovery of NF failures, resulting in
long recovery time. Moreover, they ignore the fact that an NF instance
may serve a large number of tenants in their method, resulting in large
influence scope once a failure occurs. Therefore, alternative solutions
designed for limited influence scope and fast recovery from NF failures
are in urgent need.

To overcome the shortcomings of the existing approaches, we pro-
pose RoNS to satisfy these two requirements simultaneously. The key
ideas of RoNS are two-fold: (1) To control the influence scope of NF
failures, RoNS limits the number of tenants served by each NF instance.
In this way, we can control the number of affected tenants when
encountering NF instance failures. (2) To achieve fast failure recovery,
we design agents in the data plane. RoNS schedules requests and
restores traffic processing when encountering NF failures. Specifically,
we assign default and backup NF instances for each request when
scheduling requests. Once the default NF instance fails, the traffic will
be automatically and quickly forwarded to the backup NF instance
pre-specified in the agents without the participation of the centralized
control plane (see Section 4). Thus, we can achieve fast recovery when
encountering NF failure events. The main contributions of this paper
are as follows:

1. To deal with NF failures and enhance system robustness, this
paper builds robust network function services (RoNS) in multi-
tenant clouds. Due to traffic dynamics, RoNS takes a two-phase
approach: NF instance allocation and tenant request scheduling.

2. For NF instance allocation, we formulate this problem as an in-
teger linear programming, and propose a randomized-rounding-
based algorithm called KNIT, which limits the number of NF
instances that each tenant can access. We prove that the KNIT al-
gorithm can achieve the approximation factor of 𝑂(logℎ), where
ℎ is the number of NF instances in a cloud, to limit the number
of NF instances that each tenant can access.

3. For tenant request scheduling, we design a primal–dual-based
request scheduling algorithm called PTRS. It first formulates the
dual problem of tenant request scheduling, then assigns default
and backup NF instances for each incoming request based on the
dual problem. We prove that PTRS can achieve [(1− 𝜖), 𝑂(logℎ+
2

log(1∕𝜖))] competitiveness with 𝜖 ∈ (0, 1).
4. We implement RoNS on a real testbed for experimental studies
and use simulations for large-scale investigation. The exper-
iment results and simulation results show that RoNS can cut
down the number of affected tenants by 60%, and reduce re-
covery delay from 1207 ms to 355 ms on average, compared with
existing failure recovery mechanisms based on deploying backup
instances.

The rest of this paper is organized as follows. Section 2 introduces
the goals, intuition and workflow. In Section 3, we propose a rounding-
based offline algorithm for the NF instance allocation sub-problem.
Section 4 gives a primal–dual based online algorithm to solve the
tenant request scheduling sub-problem. Section 6 presents the related
works. The experiment and simulation results are given in Section 5.
We conclude this paper in Section 7.

2. Goals and intuition

2.1. Design goals

This section introduces the goals of RoNS. Considering that tenants
may generate traffic with various service requirements, these tenants’
traffic should be scheduled to appropriate NF instances according to
their needs. Since NF failures are common in clouds [6,7], in order
to build robust network function services and ensure tenants’ QoS,
RoNS aims at achieving the following two design goals when scheduling
tenants’ traffic.

1. Limited influence scope once a failure occurs. In a multi-tenant
cloud, an NF instance usually serves lots of tenants. When an NF
instance fails, it stops processing traffic of all tenants it serves.
Therefore, to improve cloud robustness, RoNS should limit the
scope of influenced tenants once a failure occurs.

2. Fast failure recovery after a failure occurs. When an NF instance
fails, we hope to quickly reschedule the traffic from the failed
NF instance to other working ones. However, the previous failure
recovery mechanisms require the participation of the centralized
control plane, resulting in a long recovery delay. Thus, to reduce
recovery delay, RoNS should achieve fast failure recovery after
a failure occurs.

2.2. Our intuition

In Section 2.1, we summarize two critical goals of RoNS to deal with
NF failures, i.e., limited influence scope and fast failure recovery. Now,
we introduce how RoNS achieves these two goals.

For the goal of limited influence scope, RoNS sets a constraint that
the number of tenants served by an NF instance should not exceed
a threshold 𝑝 while scheduling tenants’ traffic. 𝑝 is a system-specific
parameter and is determined according to the current system state by
the administrator. This constraint limits the negative impact of a single
NF instance failure. As a result, RoNS can control the influence scope
of an NF failure event.

For the goal of fast failure recovery, RoNS designs agents (intro-
duced in Section 4.1) in the data plane and assigns both the default
and backup NF instances (in case the default one fails) to each request.
The agents are responsible for the detection of the failed NF instances
and the restoration of traffic processing. After the failure of a default
NF instance is detected, the agents reschedule requests from the failed
default NF instance to the backup ones with the help of agents without
the participation of the centralized control plane, thereby achieving
fast recovery. It should be noted that after failure recovery, each NF
instance will still serve at most 𝑝 tenants, and also meet the capacity

constraint, even if some requests are rescheduled.

Computer Networks 215 (2022) 109212H. Tu et al.

p
t
I
w
c

2

t
c
a
f
t
s
a

t
p
i
w
S
c
n
p
a
i
o
f

p
(
p
f
b
i
f
w
r
d
b

3

t
a
i

3

f
a
s
w

2.3. Problem statement

This section gives a more precise problem statement for building
robust network function services in clouds. Specifically, considering
that tenants may generate traffic with various service requirements
on different compute nodes, we identify a request by three elements
<tenant, compute node, service type>. We schedule each request to
an appropriate NF instance according to its needs. The goal is to
maximize the system throughput, which is defined as the total traffic
amount of served requests. Since NF failures are common in clouds, we
should consider the following two robustness requirements in request
scheduling. (1) To limit the number of tenants affected by the failure
of an NF instance, the number of tenants served by an NF instance
should not exceed a threshold 𝑝. (2) To quickly reschedule the traffic
rocessed by the failed NF instance to other working NF instances, both
he default and backup NF instances should be assigned to each request.
n this way, with the help of the agents designed in the data plane,
e can achieve fast failure recovery without involving the centralized

ontrol plane.

.4. System workflow

In Section 2.2, we present how to achieve the two goals of RoNS. On
he one hand, to limit the influence scope once a failure occurs, RoNS
onsiders which tenants each NF instance will serve (i.e., NF instance
llocation). On the other hand, to achieve fast failure recovery after a
ailure occurs, RoNS designs agents in the data plane and assigns both
he default and backup instances to each request (i.e., tenant request
cheduling). Thus, RoNS needs to solve two sub-problems: NF instance
llocation and tenant request scheduling.

One may think that it is natural to design an algorithm to solve
he above two sub-problems jointly. However, since these two sub-
roblems have some inherent differences, it may not be feasible. Specif-
cally, if we update the NF instance set of each tenant, many requests
ill be affected and rescheduled due to the new allocation result.
ince NF instances need to back up the state information (e.g., packet
ounters) [17] of the newly allocated tenant’s requests, it will sig-
ificantly increase update delay and control overhead for consistency
reserving [17]. Thus, we should reallocate NF instances for requests in
long-term interval. Meanwhile, in order to adapt to traffic dynamics

n clouds, it is necessary to schedule requests in an online manner. In
ther words, these two problems should be performed at different
requencies.

To this end, RoNS takes a two-phase approach. In the first phase, we
ropose a rounding-based offline algorithm for NF instance allocation
Section 3) to achieve the first goal. Based on the results of the first
hase, in the second phase, we present a primal–dual online algorithm
or tenant request scheduling (Section 4) to determine the default and
ackup NF instances of each request. Then we restore this information
n the agents designed in the data plane. Once the agents detect NF
ailures, they reschedule the traffic from the failed NF instances to other
orking ones without the help of the centralized control plane, thereby

educing recovery delay and achieving the second goal. The design
etails of the proposed fast recovery mechanism based on agents will
e given in Section 4.1.

. NF instance allocation

In this section, we first introduce the multi-tenant cloud model,
hen formulate the NF instance allocation (NIT) problem and present
rounding-based algorithm to solve it. At last, we analyze the approx-
3

mation performance of our proposed algorithm.
.1. Multi-tenant cloud model

A typical multi-tenant cloud consists of four components: a network
unction (NF) set, a compute node set, a centralized control plane and

tenant set. The network function set contains 𝑚 types of network
ervices, denoted as 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑚}. For clear problem formulation,
e use 𝑁𝑠 = {𝑁𝑠

1 , 𝑁
𝑠
2 ,… , 𝑁𝑠

ℎ𝑠
} to represent the set of NF instances with

type 𝑠 ∈ 𝑆, where ℎ𝑠 = |𝑁𝑠| is the number of NF instances with type
𝑠. We also use 𝑁 = 𝑁1 ∪ 𝑁2 ∪ ⋯ ∪ 𝑁𝑠 to denote the set of all the NF
instances. The total number of NF instances in the cloud is denoted as
ℎ, i.e., ℎ =

∑

𝑠∈𝑆 ℎ𝑠. Due to the processing capacity constraints, each
instance 𝑛 can only provide services for a limited amount of requests
(or tenants), and such processing capacity is denoted as 𝐶𝑛. A set of
compute nodes provide computing resources to tenants via creating
VMs. The centralized control plane is responsible for managing the
whole cloud system, e.g., traffic scheduling.

In multi-tenant clouds, tenants rent VMs and buy services from
cloud vendors according to their needs. We use 𝑇 = {𝑡1, 𝑡2,… , 𝑡

|𝑇 |}
to denote a set of tenants. Different tenants may generate traffic with
various service requirements on different compute nodes.

3.2. Problem definition for NIT

The NIT problem focuses on how to select at most 𝑝 tenants for each
NF instance, thereby limiting the scope of impact when a failure occurs.
Let 𝑏𝑡 be the total traffic demand of tenant 𝑡 ∈ 𝑇 . We use the binary
variable 𝑥𝑛𝑡 to represent whether tenant 𝑡 ∈ 𝑇 can be served by NF
instance 𝑛 ∈ 𝑁 or not, and use 𝑦𝑛𝑡 to represent the traffic proportion of
tenant 𝑡 processed by NF instance 𝑛. The NIT problem can be formulated
as follows:

max
∑

𝑡∈𝑇

∑

𝑛∈𝑁
𝑦𝑛𝑡 ⋅ 𝑏𝑡

𝑆.𝑡.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

𝑛∈𝑁
𝑦𝑛𝑡 ≤ 1, ∀𝑡 ∈ 𝑇

∑

𝑡∈𝑇
𝑥𝑛𝑡 ≤ 𝑝, ∀𝑛 ∈ 𝑁

𝑦𝑛𝑡 ≤ 𝑥𝑛𝑡 , ∀𝑡 ∈ 𝑇 , 𝑛 ∈ 𝑁
∑

𝑡∈𝑇
𝑦𝑛𝑡 ⋅ 𝑏𝑡 ≤ 𝐶𝑛, ∀𝑛 ∈ 𝑁

𝑥𝑛𝑡 ∈ {0, 1}, ∀𝑡 ∈ 𝑇 , 𝑛 ∈ 𝑁

𝑦𝑛𝑡 ∈ [0, 1], ∀𝑡 ∈ 𝑇 , 𝑛 ∈ 𝑁

(1)

The first set of inequalities shows the inherent property of the
variable 𝑦𝑛𝑡 , i.e., for each tenant 𝑡, NF instance 𝑛 can handle part of its
traffic. The second set of inequalities means that each NF instance will
process traffic from at most 𝑝 tenants (referred to tenant constraint for
short). This constraint can limit influence scope once a failure occurs.
The third set of inequalities represents that NF instance 𝑛 is allocated to
tenant 𝑡 if and only if there exists some traffic of tenant 𝑡 is scheduled to
NF instance 𝑛. The fourth set of inequalities represents the processing
capacity constraint of NF instances. Our objective is to maximize the
tenant traffic that can be served by NF instances through proper NF
instance allocation while satisfying the above constraints.

3.3. Algorithm design for NIT

By using the traditional randomized rounding algorithm to solve
NIT, we can obtain the approximation factors of (𝑂(logℎ), 𝑂(logℎ)) [18].
That is, the tenant constraint (i.e., the second set of inequations in
Eq. (1)) and the NF processing capacity constraint (i.e., the fourth
set of inequations in Eq. (1)) are violated at most by a multiplicative
factor 𝑂(logℎ). This section proposes a novel knapsack-based rounding
algorithm for NIT, called KNIT. It can achieve approximation factors of

(1, 𝑂(logℎ)), and with proper assumption, the bound can be tightened to

Computer Networks 215 (2022) 109212H. Tu et al.

t
m
t
K
i

a
p
𝑝
t

i
𝑇
w

T
𝑡

i

1
1
1

1

(1, 2). It means that the proposed KNIT algorithm can strictly satisfy the
enant constraint and violate the NF processing capacity constraint at
ost by a multiplicative factor 2 in most practical scenarios. Moreover,

he total tenant traffic that can be served by NF instances derived by
NIT is close to the optimal value with a high probability as illustrated

n Theorem 5.
The KNIT algorithm consists of two steps. The first step constructs

linear program as a relaxation of NIT. More specifically, the NIT
roblem assumes that each NF instance can process traffic from at most
tenants. By relaxing this assumption, each NF instance can handle

he traffic of any number of tenants. The relaxed linear program 𝐿𝑃1
is formulated as follows:

max
∑

𝑡∈𝑇

∑

𝑛∈𝑁
𝑦𝑛𝑡 ⋅ 𝑏𝑡

𝑆.𝑡.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

𝑛∈𝑁
𝑦𝑛𝑡 ≤ 1, ∀𝑡 ∈ 𝑇

∑

𝑡∈𝑇
𝑦𝑛𝑡 ⋅ 𝑏𝑡 ≤ 𝐶𝑛, ∀𝑛 ∈ 𝑁

𝑦𝑛𝑡 ∈ [0, 1], ∀𝑡 ∈ 𝑇 , 𝑛 ∈ 𝑁

(2)

Because Eq. (2) is a linear program, we can use a linear program solver
to solve it in polynomial, then obtain the optimal solution {𝑦𝑛𝑡 }.

In the second step, for each NF instance 𝑛 ∈ 𝑁 , KNIT puts each
tenant 𝑡 ∈ 𝑇 with 𝑦𝑛𝑡 ≥ 0 into a set 𝑇 ′

𝑛 , then it will choose at most
𝑝 tenants from 𝑇 ′

𝑛 , and allocate a feasible traffic 𝑦̂𝑛𝑡 for each chosen
tenant. If |𝑇 ′

𝑛 | ≤ 𝑝, we set 𝑦̂𝑛𝑡 = 𝑦𝑛𝑡 . Otherwise, we divide the set 𝑇 ′
𝑛

nto two sets, 𝑇𝑛 and 𝑇 ′′
𝑛 . We first introduce how to construct the set

𝑛. Initially, we set 𝑝′ = 𝑝, and 𝐶 ′
𝑛 =

∑

𝑡∈𝑇 𝑦
𝑛
𝑡 ⋅ 𝑏𝑡. In each iteration,

e add tenant 𝑡 ∈ 𝑇 ′
𝑛 with 𝑦𝑛𝑡 ⋅ 𝑏𝑡 ≥

𝐶′
𝑛
𝑝′ to set 𝑇𝑛. After each iteration

terminates, we update 𝐶 ′
𝑛 =

∑

𝑡∈𝑇 𝑦
𝑛
𝑡 ⋅ 𝑏𝑡 −

∑

𝑡∈𝑇𝑛 𝑦
𝑛
𝑡 ⋅ 𝑏𝑡, and 𝑝′ = 𝑝− |𝑇𝑛|.

hen, we determine the set 𝑇 ′′
𝑛 as 𝑇 ′′

𝑛 = 𝑇 ′
𝑛 − 𝑇𝑛. For each tenant

∈ 𝑇 ′′
𝑛 , we define another variable 𝑤𝑡 =

𝑝′⋅𝑦𝑛𝑡 ⋅𝑏𝑡
𝐶′
𝑛

= 𝑝′⋅𝑦𝑛𝑡 ⋅𝑏𝑡
∑

𝑡∈𝑇 ′′𝑛
𝑦𝑛𝑡 ⋅𝑏𝑡

. Obviously,
∑

𝑡∈𝑇 ′′
𝑛
𝑤𝑡 = 𝑝′. We place each tenant with weight 𝑤𝑡 into 𝑝′ knapsacks

so as to minimize the total weight of all tenants in each knapsack. Then,
for each knapsack 𝑔, assume that it contains a set of tenants, denoted
by 𝑇 𝑔𝑛 , and 𝑒𝑔 =

∑

𝑡∈𝑇 𝑔𝑛
𝑤𝑡. One tenant 𝑡 ∈ 𝑇 𝑔𝑛 will be chosen with

probability 𝑤𝑡
𝑒𝑔

, and the traffic proportion of tenant 𝑡 processed by NF

nstance 𝑛 is set to 𝑦̂𝑛𝑡 = 𝑒𝑔 ⋅𝐶′
𝑛

𝑝′⋅𝑏𝑡
. Otherwise, we set 𝑦̂𝑛𝑡 = 0. The detailed

description of KNIT is given in Alg. 1.

3.4. Performance analysis

We first give the following lemma to analyze the approximation
performance.

Lemma 1. The KNIT algorithm can guarantee that each NF instance will
process traffic from no more than 𝑝 tenants.

Proof. If |𝑇 ′
𝑛 | ≤ 𝑝, KNIT will assign these tenants to NF instance

𝑛 ∈ 𝑁 . In this case, the lemma holds. Otherwise, KNIT divides the set
𝑇 ′
𝑛 into two sets, 𝑇𝑛 and 𝑇 ′′

𝑛 . After degerming the set 𝑇𝑛, we update
𝐶 ′
𝑛 =

∑

𝑡∈𝑇 𝑦
𝑛
𝑡 ⋅ 𝑏𝑡 −

∑

𝑡∈𝑇𝑛 𝑦
𝑛
𝑡 ⋅ 𝑏𝑡, and 𝑝′ = 𝑝 − |𝑇𝑛|. Then, the algorithm

will choose 𝑝′ tenants from 𝑇 ′′
𝑛 for NF instance 𝑛 ∈ 𝑁 . After this, the

number of tenants assigned to instance 𝑛 is |𝑇𝑛| + 𝑝′ = 𝑝. Thus, the
lemma still holds.

We introduce the following two famous lemmas of probability
analysis before analyzing the approximation performance of the KNIT
algorithm.

Theorem 2 (Chernoff Bound [19]). Given 𝑛 independent variables: 𝑦1, 𝑦2,
… , 𝑦𝑛, where ∀𝑦𝑖 ∈ [0, 1]. Let 𝜇 = E[

∑𝑛
𝑖=1 𝑦𝑖]. Then, Pr[

∑𝑛
𝑖=1 𝑦𝑖 ≥ (1 +

𝜖)𝜇] ≤ 𝑒
−𝜖2𝜇
2+𝜖 and 𝐏𝐫[

∑𝑛
𝑖=1 𝑦𝑖 ≤ (1 − 𝜍)𝜇] ≤ 𝑒−𝜍𝜇∕2, where 𝜖 and 𝜍 are
4

arbitrary positive values.
Algorithm 1 KNIT: Knapsack-Based Rounding for NIT
1: Step 1: Solving the Relaxed Problem
2: Construct a linear program 𝐿𝑃1 in Eq. (2)
3: Obtain the optimal solutions {𝑦𝑛𝑡 }
4: Step 2: Allocating Tenants to Each NF Instance
5: for each NF instance 𝑛 ∈ 𝑁 do
6: Set 𝑝′ = 𝑝, 𝐶 ′

𝑛 =
∑

𝑡∈𝑇 𝑦
𝑛
𝑡 ⋅ 𝑏𝑡, 𝑇 ′

𝑛 = {𝑡|𝑦𝑛𝑡 ≥ 0, 𝑡 ∈ 𝑇 }, and 𝑇𝑛 = ∅
7: if |𝑇 ′

𝑛 | ≤ 𝑝′ then
8: Put all tenants in 𝑇 ′

𝑛 to set 𝑇𝑛, and set 𝑦̂𝑛𝑡 = 𝑦𝑛𝑡
9: continue

10: while max{𝑦𝑛𝑡 ⋅ 𝑏𝑡} ≥ 𝐶′
𝑛
𝑝′ do

11: Add tenant 𝑡 ∈ 𝑇 ′
𝑛 with 𝑦𝑛𝑡 ⋅ 𝑏𝑡 ≥

𝐶′
𝑛
𝑝′ to set 𝑇𝑛, and set 𝑦̂𝑛𝑡 = 𝑦𝑛𝑡

2: 𝐶 ′
𝑛 =

∑

𝑡∈𝑇 𝑦
𝑛
𝑡 ⋅ 𝑏𝑡 −

∑

𝑡∈𝑇𝑛 𝑦
𝑛
𝑡 ⋅ 𝑏𝑡, and 𝑝′ = 𝑝 − |𝑇𝑛|

3: 𝑇 ′′
𝑛 = 𝑇 ′

𝑛 − 𝑇𝑛
4: for each tenant 𝑡 ∈ 𝑇 ′′

𝑛 do
5: 𝑤𝑡 =

𝑝′⋅𝑦𝑛𝑡 ⋅𝑏𝑡
𝐶′
𝑛

= 𝑝′⋅𝑦𝑛𝑡 ⋅𝑏𝑡
∑

𝑡∈𝑇 ′′𝑛
𝑦𝑛𝑡 ⋅𝑏𝑡

16: Put tenants in 𝑇 ′′
𝑛 into 𝑝′ knapsacks with min-max weight

17: The tenant set in knapsack 𝑔 is denoted by 𝑇 𝑔𝑛
18: for each knapsack 𝑔 do
19: 𝑒𝑔 =

∑

𝑡∈𝑇 𝑔𝑛
𝑤𝑡

20: Randomly choose a tenant 𝑡 ∈ 𝑇 𝑔𝑛 with probability 𝑤𝑡
𝑒𝑔

, and set

𝑦̂𝑛𝑡 =
𝑒𝑔 ⋅𝐶′

𝑛
𝑝′⋅𝑏𝑡

Theorem 3 (Union Bound [20]). Given a countable set of 𝑛 events:
𝐴1, 𝐴2,… , 𝐴𝑛, each event 𝐴𝑖 happens with possibility Pr(𝐴𝑖). Then, Pr(𝐴1∪
𝐴2 ∪⋯ ∪ 𝐴𝑛) ≤

∑𝑛
𝑖=1Pr(𝐴𝑖).

Assume that the minimum capacity of all NF instances is denoted
as 𝐶𝑚𝑖𝑛. We define a variable 𝜛 as follows:

𝜛 = min
{

𝐶𝑚𝑖𝑛
𝑏𝑡

, 𝑡 ∈ 𝑇
}

(3)

Theorem 4. The proposed KNIT algorithm guarantees that the total traffic
on any NF instance 𝑛 ∈ 𝑁 will not exceed its capacity 𝐶𝑛 by a factor of
logℎ
𝜛 + 3. Moreover, in practice, the bound can be tighten to 2.

Proof. The traffic load on NF instance 𝑛 from tenant 𝑡 ∈ 𝑇 is denoted by
a random variable 𝛿𝑡,𝑛. For each tenant, if 𝑡 ∈ 𝑇𝑛, 𝛿𝑡,𝑛 = 𝑦𝑡𝑛 ⋅ 𝑏𝑡. If 𝑡 ∈ 𝑇 ′′

𝑛 ,
it follows that E[𝛿𝑡,𝑛] =

𝑤𝑡⋅𝐶′
𝑛

𝑝′ = 𝑦𝑡𝑛 ⋅ 𝑏𝑡. Thus, E[𝛿𝑡,𝑛] = 𝑦𝑡𝑛 ⋅ 𝑏𝑡,∀𝑡 ∈ 𝑇 . By
this definition, random variable 𝛿 are mutually independent. We can
get the expected traffic load on each NF instance 𝑛 ∈ 𝑁 :

E

[

∑

𝑡∈𝑇
𝛿𝑡,𝑛

]

=
∑

𝑡∈𝑇
E
[

𝛿𝑡,𝑛
]

=
∑

𝑡∈𝑇
𝑦𝑡𝑛 ⋅ 𝑏𝑡 ≤ 𝐶𝑛 (4)

Combining Eq. (4) and the definition of 𝜛 in Eq. (3), we have:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛿𝑡,𝑛 ⋅𝜛
𝐶𝑛

∈ [0, 1]

E

[

∑

𝑡∈𝑇

𝛿𝑡,𝑛 ⋅𝜛
𝐶𝑛

]

≤ 𝜛
(5)

By applying Theorem 2, assume that 𝜌 is an arbitrary positive value,
it follows:

𝐏𝐫
[

∑

𝑡∈𝑇

𝛿𝑡,𝑛 ⋅𝜛
𝐶𝑛

≥ (1 + 𝜌)𝜛

]

≤ 𝑒
−𝜌2𝜛
2+𝜌 (6)

Now, we assume that:

𝐏𝐫
[

∑ 𝛿𝑡,𝑛 ≥ (1 + 𝜌)

]

≤ 𝑒
−𝜌2𝜛
2+𝜌 ≤ 1 (7)
𝑡∈𝑇 𝐶𝑛 ℎ

Computer Networks 215 (2022) 109212H. Tu et al.

I
t

𝜌

i
c

T

t
m
𝑂

P
A

E

𝐏

𝜛
K
c
f
s
t

4

d
t
a
c
o
(
w
w

4

c
c

where ℎ is the number of NF instances in clouds. We know that 1
ℎ → 0

when the network grows. By solving Eq. (7), we have the following
results:

𝜌 ≥
logℎ +

√

log2 ℎ + 8𝜛 logℎ

2𝜛
⇒ 𝜌 ≥

logℎ
𝜛

+ 2 (8)

n most practical scenarios, according to the definition of 𝜛, we assume
hat 𝜛 ≥ 3 logℎ. Thus, we have:

≥
logℎ +

√

(logℎ − 2𝜛)2 − 4𝜛2 + 12𝜛 logℎ
2𝜛

⇒ 𝜌 ≥ 1 (9)

Thus, the approximation factor for NF instance capacity constraints
s 𝜌+1 = logℎ

𝜛 +3. Under proper assumption (i.e., 𝜛 ≥ 3 logℎ), the bound
an be tighten to 𝜌 + 1 = 2.

heorem 5. Suppose 𝑂𝐿𝑃 is the optimal objective value to the relaxed
version of Eq. (2), while 𝑂𝑅 is the objective value of Eq. (2) associated with
he KNIT algorithm. We have 𝐏𝐫[𝑂𝑅 ≤ (1 − 𝜍)𝑂𝐿𝑃] ≤ 𝑒−𝜍𝑂𝐿𝑃 ∕2, which
eans the objective value 𝑂𝑅 derived by KNIT is close to the optimal value
𝐿𝑃 with a high probability.

roof. From the analysis in Theorem 4, we have E[𝑦̂𝑛𝑡 ⋅ 𝑏𝑡] = 𝑦𝑛𝑡 ⋅ 𝑏𝑡.
ccordingly,

[𝑂𝑅] =
∑

𝑡∈𝑇

∑

𝑛∈𝑁
𝑦̂𝑡𝑛 ⋅ 𝑏𝑡 =

∑

𝑡∈𝑇

∑

𝑛∈𝑁
𝑦𝑡𝑛 ⋅ 𝑏𝑡 = 𝑂𝐿𝑃 (10)

Then, we have 𝑒−𝜍𝑂𝑅∕2 = 𝑒−𝜍𝑂𝐿𝑃 ∕2. Based on Theorem 2, we have:

𝐫[𝑂𝑅 ≤ (1 − 𝜍)E[𝑂𝑅]] ≤ 𝑒−𝜍E[𝑂𝑅]∕2 (11)

Combining above discussions, we conclude that:

𝐏𝐫[𝑂𝑅 ≤ (1 − 𝜍)𝑂𝐿𝑃] ≤ 𝑒−𝜍𝑂𝐿𝑃 ∕2 (12)

Thus, the objective value 𝑂𝑅 derived by KNIT is close to the optimal
value 𝑂𝐿𝑃 with a high probability.

Approximation Factors: According to the above theorems, the
tenant constraint can be strictly satisfied, and the processing capacity
of NF instances will hardly be violated by a factor of logℎ

𝜛 +3. It means
that KNIT can achieve the optimal solution, violating the NF instance
capacity by at most a factor logℎ

𝜛 +3, while strictly satisfying the tenant
constraint. Thus, we can conclude that KNIT can achieve the bi-criteria
approximation of (1, logℎ

𝜛 + 3). Under some proper assumptions (e.g.,
≥ 3 logℎ), the bound can be tightened to (1, 2). It means that

NIT can achieve the optimal solution and strictly satisfy the tenant
onstraint, violating the NF instance capacity constraints by at most a
actor 2. It should be noted that the traffic size of each request will be
caled to a specific value by using the traffic controlling method. Under
his case, we can avoid the network congestion.

. Tenant request scheduling

To achieve the second goal (introduced in Section 2.1), we need to
esign a fast recovery mechanism in the data plane without the par-
icipation of the centralized control plane, and assign both the default
nd backup NF instances to each request (tenant request scheduling) in
ase the default one fails. In the following, we first introduce the design
f fast recovery, then define the problem of tenant request scheduling
TRS) and present an online algorithm called PTRS to solve it. Finally,
e analyze its approximation performance and introduce how to deal
ith the failure of multiple NF instances.

.1. Design of fast recovery

In the previous works, their failure recovery methods are tightly
oupled with the central control plane. Specifically, the centralized
ontrol plane needs to continuously monitor the status of NF instances
5

Fig. 1. Illustration of the fast recovery design. There is one compute node and two NF
nodes. A virtual machine (VM1) is launched on the compute node. Two IDS instances
(IDS1, IDS2) are running on two NF nodes, respectively. IDS1 and IDS2 are designated
by the centralized control plane as the default NF instance and backup NF instance for
VM1’s traffic, respectively. The dotted line with arrow indicates the recovery workflow.
The solid line with arrow indicates the traffic forwarding.

to determine whether there is an NF failure. Then the centralized
control plane selects another working NF instance and installs new
forwarding rules on Open vSwitches (OVSes) [21] to reroute traffic
to the selected NF instance when an NF failure is detected. However,
the failure recovery process in this method requires the participation
of the centralized control plane, resulting in a long recovery time.
In the OpenFlow protocol [22], the group table with ‘‘fast failover’’
type supports recovery from link failures without notifying the cen-
tralized control plane by pre-designating the backup output ports on
switches [23,24]. But in fact, since the fast failover group table can only
monitor the status of adjacent ports, it cannot be aware of NF failures.
Therefore, it does not support the recovery of NF failures.

Motivated by these observations and fast failover group table in
OpenFlow, we design agents on servers (referred to NF nodes in the
following) where NF instances are running. The agent on an NF node
is mainly responsible for: (1) detecting whether the NF instances started
in the NF node are failed or not; (2) adding a higher priority flow entry
(backup flow entry for short) on OVS for redirecting traffic on the failed
NF instance to the backup NF instance; (3) reporting the NF failure
event and backup instance information (e.g., IP, MAC, etc.) to compute
nodes which have traffic processed by the failed NF instance. When
a compute node receives the NF failure message and backup instance
information from the agents on the NF nodes, it updates the flow entry
on OVS, so that the subsequent traffic will be sent to the backup NF
instance directly. It should be noted that when scheduling requests,
each request’s backup NF instance information has been stored on
the agent in advance. Since NF failure detection and forwarding rule
update are both implemented by the agents on NF nodes without the
participation of the centralized control plane, the failure recovery time
can be greatly reduced, thereby achieving fast recovery. After the agent
finishes the restoration of traffic processing in the data plane, it reports
the information of the failed NF instance to the control plane, so that
the control plane can obtain the global state of the data plane.

Now we give an example in Fig. 1 to further illustrate the proposed
fast recovery design in detail. For simplicity, we assume that a tenant’s
virtual machine (VM1) is launched on a compute node, and VM1’s
traffic needs to be processed by intrusion detection system (IDS) for
security. Two IDS instances (IDS1, IDS2) are running on two NF nodes,
respectively. The centralized control plane assigns IDS1 and IDS2 as
the default NF instance and backup NF instance of VM1’s traffic,
respectively. The centralized control plane schedules VM1’s traffic to
the default instance IDS1 by configuring the rules on the OVS of the
compute node, stores IDS2’s information in the agent of the NF node

where IDS1 is located. Once the agent detects that IDS1 is failed,

Computer Networks 215 (2022) 109212H. Tu et al.

t
a
d
t
c
a
w

𝛾
∑

W
∑

T
∑

w
c

m

𝑆

f

i
b

it immediately adds a backup flow entry based on the stored IDS2’s
information to redirect the traffic to IDS2. Then the agent reports the
IDS1 failure event and the backup instance IDS2’s information to the
compute node. When the compute node receives these messages, it
updates the flow entry, so that the subsequent traffic will be forwarded
to the backup instance IDS2 directly. From the proposed fast recovery
procedure, we can see that neither the failure detection of IDS1 nor the
recovery of traffic processing involves the centralized control plane.

4.2. Problem definition for TRS

In practice, a cloud usually consists of multiple regions/subnets [25].
Based on efficiency considerations, service requests are usually sched-
uled within a region [25]. Assume that the number of NF instances of
the same type in a region is 100 and the failure probability of an NF
instance is 0.1% [8]. Under this case, the failure probability of single
instance and multiple instances is 9.06% and 0.47%, respectively.
It means that single instance failure is more common than multiple
instance failures in a region. Thus, this section only selects one default
instance and one backup instance for each request to cope with the
single instance failure event. The scenario of multi-instance failure will
be discussed in Section 4.5.

We can obtain the set of tenants allocated to each NF instance
using the KNIT algorithm. Based on these results, we first derive a
candidate scheduling scheme set for each tenant 𝑡 ∈ 𝑇 (denoted as 𝛹𝑡).
Each scheduling scheme includes a default NF instant and a backup
one. Considering that the traffic generated by different tenants may
have various service requirements on different compute nodes, we
distinguish a request by three elements <tenant, compute node, service
type>. Let 𝛤𝑡 be the request set of tenant 𝑡. For each request 𝛾 ∈ 𝛤𝑡
of tenant 𝑡, we select a scheme from 𝛹𝑡 for request 𝛾, such that both
he capacity constraints and the limited influence scope requirement
re still satisfied on all NF instances, even after failure recovery. We
efine a binary variable 𝑧𝜓𝑡,𝛾 to represent whether request 𝛾 ∈ 𝛤𝑡 of
enant 𝑡 ∈ 𝑇 will be scheduled with scheme 𝜓 ∈ 𝛹𝑡. Let the binary
onstant 𝐼1(𝜓, 𝑛) represent whether the default instance in 𝜓 is the same
s 𝑛 ∈ 𝑁 (𝐼1(𝜓, 𝑛) = 1) or not (𝐼1(𝜓, 𝑛) = 0), and 𝐼2(𝜓, 𝑛) represent
hether the backup instance in 𝜓 is the same as 𝑛 (𝐼2(𝜓, 𝑛) = 1) or not

(𝐼2(𝜓, 𝑛) = 0). Now, we introduce how the overall load on NF instance
𝑛𝑗 can be obtained once NF instance 𝑛𝑖 fails. The traffic size of request

is recorded as 𝑏𝛾 . Without failure, the load on NF instance 𝑛𝑗 is:

𝑡∈𝑇

∑

𝛾∈𝛤𝑡

∑

𝜓∈𝛹𝑡

𝑧𝜓𝑡,𝛾 ⋅ 𝐼1(𝜓, 𝑛𝑗) ⋅ 𝑏𝛾 (13)

hen NF instance 𝑛𝑖 fails, the incremental load on NF instance 𝑛𝑗 is:

𝑡∈𝑇

∑

𝛾∈𝛤𝑡

∑

𝜓∈𝛹𝑡

𝑧𝜓𝑡,𝛾 ⋅ 𝐼1(𝜓, 𝑛𝑖) ⋅ 𝐼2(𝜓, 𝑛𝑗) ⋅ 𝑏𝛾 (14)

hus, when NF instance 𝑛𝑖 fails, the overall load on NF instance 𝑛𝑗 is:

𝑡∈𝑇

∑

𝛾∈𝛤𝑡

∑

𝜓∈𝛹𝑡

𝑧𝜓𝑡,𝛾 ⋅ 𝜃
𝜓
𝑖,𝑗 ⋅ 𝑏𝛾 (15)

here 𝜃𝜓𝑖,𝑗 = 𝐼1(𝜓, 𝑛𝑗)+𝐼1(𝜓, 𝑛𝑖)⋅𝐼2(𝜓, 𝑛𝑗). Accordingly, the TRS problem
an be formulated as follows:

ax
∑

𝑡∈𝑇

∑

𝛾∈𝛤𝑡

∑

𝜓∈𝛹𝑡

𝑧𝜓𝑡,𝛾 ⋅ 𝑏𝛾

.𝑡.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

𝜓∈𝛹𝑡

𝑧𝜓𝑡,𝛾 ≤ 1, ∀𝑡 ∈ 𝑇 , 𝛾 ∈ 𝛤𝑡

∑

𝑡∈𝑇

∑

𝛾∈𝛤𝑡

∑

𝜓∈𝛹𝑡

𝑧𝜓𝑡,𝛾 ⋅ 𝜃
𝜓
𝑖,𝑗 ⋅ 𝑏𝛾 ≤ 𝐶𝑗𝑛 , ∀𝑛𝑖, 𝑛𝑗 , 𝑛𝑖 ≠ 𝑛𝑗

𝑧𝜓𝑡,𝛾 ∈ {0, 1}, ∀𝑡, 𝛾, 𝜓

(16)

The first set of inequalities means at most one scheme is selected
6

or request 𝛾. The second set of inequalities denotes that the load on
nstance 𝑛𝑗 will not exceed its capacity, even if some requests served
y failed instance 𝑛𝑖 are migrated to 𝑛𝑗 , with ∀𝑛𝑖, 𝑛𝑗 ∈ 𝑁 . The objective

goal of TRS is to maximize throughput, i.e., total traffic amount of
requests successfully served by NF instances.

One may think that the traffic proportion of tenant 𝑡 handled by
NF instance 𝑛 needs to be equal to the solution of variable 𝑦𝑛𝑡 in
the first phase. However, this is not the case. When solving the NF
instance allocation problem, the traffic demand 𝑏𝑡 of tenant 𝑡 is obtained
through long-term observation and statistical collection. Then we use
the KNIT algorithm to determine the tenant set served by each NF
instance through the solution of variable 𝑥𝑛𝑡 and obtain the traffic
proportion of tenant 𝑡 handled by NF instance 𝑛 through the solution
of variable 𝑦𝑛𝑡 . Based on the result of 𝑥𝑛𝑡 , the second phase determines
the scheduling scheme for each incoming request in an online manner.
Thus, the traffic information input in the first phase is based on long-
term offline statistics, and that of the second phase is based on online
incoming requests. That is, the traffic input in the first phase is totally
different from that in the second phase. Therefore, the traffic proportion
of tenant 𝑡 handled by NF instance 𝑛 in the second phase does not need
to be equal to the solution of variable 𝑦𝑛𝑡 in the first phase.

Lemma 6. The TRS problem is NP-hard.

Proof. Consider a special case of TRS, in which there are only two NF
instances with equal processing capacity. Each request will be assigned
with a default NF instance and a backup NF instance in case the
default NF instance fails and there is no difference to distinguish the
default NF instance and the backup NF instance. Therefore, the TRS
problem with the objective to maximize the overall traffic amount of
requests successfully served by NF instances becomes the knapsack
problem with the objective to maximize the total value of all accepted
items. Specifically, the NF instance and requests can be regarded as the
knapsack and items, respectively. The processing capacity constraint
on the NF instance is like the capacity constraint of the knapsack. The
throughput of TRS, i.e., the total traffic amount of all accepted requests,
can be regarded as the total value of all accepted items in the knapsack
problem. Since the special case of the TRS problem is substantially the
knapsack problem, which is a well-know NP-hard problem, our TRS
problem is NP-hard as well.

4.3. Algorithm design for TRS

To solve the problem in Eq. (16), we design an online algorithm
called PTRS based on a primal–dual method. We first construct the dual
problem for the linear relaxation of Eq. (16). Let 𝛼𝑡,𝛾 and 𝛽𝑛𝑖 ,𝑛𝑗 be the
dual variables of the first and second sets of inequalities, respectively,
and all dual variables are non-negative. The dual problem can be
formulated as:

min
∑

𝑡∈𝑇

∑

𝛾∈𝛤𝑡

𝛼𝑡,𝛾 +
∑

𝑛𝑖 ,𝑛𝑗 ,𝑛𝑖≠𝑛𝑗

𝛽𝑛𝑖 ,𝑛𝑗 ⋅ 𝐶
𝑗
𝑛

𝑆.𝑡.

⎧

⎪

⎨

⎪

⎩

𝛼𝑡,𝛾 +
∑

𝑛𝑖 ,𝑛𝑗 ,𝑛𝑖≠𝑛𝑗

𝜃𝜓𝑖,𝑗 ⋅ 𝑏𝛾 ⋅ 𝛽𝑛𝑖 ,𝑛𝑗 ≥ 𝑏𝛾 , ∀𝑡, 𝛾, 𝜓

𝛼𝑡,𝛾 ≥ 0, 𝛽𝑛𝑖 ,𝑛𝑗 ≥ 0, ∀𝑡, 𝛾, 𝑛𝑖, 𝑛𝑗 , 𝑛𝑖 ≠ 𝑛𝑗
(17)

Then, the first constraint of Eq. (17) can be rewritten as:

𝛼𝑡,𝛾 ≥ 𝑏𝛾
⎛

⎜

⎜

⎝

1 −
∑

𝑛𝑖 ,𝑛𝑗 ,𝑛𝑖≠𝑛𝑗

𝜃𝜓𝑖,𝑗 ⋅ 𝛽𝑛𝑖 ,𝑛𝑗

⎞

⎟

⎟

⎠

,∀𝑡, 𝛾, 𝜓 (18)

The first step of the PTRS is to initialize corresponding constants
and all the dual variables. Based on the first inequality set in Eq. (17),
we define constant 𝐵∗ as the maximum usage of resource over all
scheduling schemes for each request.

𝐵∗ = max {𝜃𝜓𝑖,𝑗} (19)

𝑡,𝜓,𝑛𝑖 ,𝑛𝑗 ,𝑛𝑖≠𝑛𝑗

Computer Networks 215 (2022) 109212H. Tu et al.

1
1
1

1

1

1
1

c

P
s
v
G
a
F
𝛼
T
P

i
𝜓

w
s

a
A

𝛼

m

t
a

c
𝜓
s
f

L

The second step of PTRS is to select a scheduling scheme for each
incoming request. Once a new request comes, PTRS computes the price
of each candidate scheme. Suppose that this new request belongs to
tenant 𝑡, the price of scheme 𝜓 ∈ 𝛹𝑡 can be defined as:

𝐾𝜓 =
∑

𝑛𝑖 ,𝑛𝑗 ,𝑛𝑖≠𝑛𝑗

𝜃𝜓𝑖,𝑗 ⋅ 𝛽𝑛𝑖 ,𝑛𝑗 (20)

The PTRS algorithm figures out the scheme with lowest price, denoted
as 𝐾𝜓∗ . If 𝐾𝜓∗ > 1, it will violate the dual program’s constraints (be
proved in Lemma 7). Then, PTRS will reject this request and set the
corresponding dual variable 𝛼𝑡,𝛾 to 0. Otherwise, PTRS will accept the
request, and the dual variables will be updated as follows:

⎧

⎪

⎨

⎪

⎩

𝛼𝑡,𝛾 ← 𝑏𝛾 (1 −𝐾𝜓∗)

𝛽𝑛𝑖 ,𝑛𝑗 ← 𝛽𝑛𝑖 ,𝑛𝑗 (1 +
𝜃𝜓𝑖,𝑗 ⋅𝑏𝛾
𝐶𝑗𝑛

) +
𝜃𝜓𝑖,𝑗 ⋅𝑏𝛾
ℎ2⋅𝜑⋅𝐶𝑗𝑛

, ∀𝑛𝑖, 𝑛𝑗
(21)

Now, we give the formal description of PTRS in Alg. 2.

Algorithm 2 PTRS: Primal–Dual Algorithm for TRS
1: Step 1: Algorithm Initialization
2: 𝜑 = 𝐵∗∕𝜖, where 𝜖 ∈ (0, 1)
3: Initialization all the dual variables:
4: 𝛼(𝑡, 𝛾) ← 0,∀𝑡 ∈ 𝑇 , 𝛾 ∈ 𝛤𝑡
5: 𝛽𝑛𝑖 ,𝑛𝑗 ← 0,∀𝑛𝑖, 𝑛𝑗 ∈ 𝑁, 𝑛𝑖 ≠ 𝑛𝑗
6: Step 2: On arriving of a request
7: for each arrival request 𝛾 do
8: Denote the tenant that request 𝛾 belongs to as 𝑡
9: Calculate the price 𝐾𝜓 of candidate scheme 𝜓 ∈ 𝛹𝑡 according to

Eq. (20)
0: 𝜓∗ ← argmin𝜓 𝐾𝜓
1: if 𝐾𝜓∗ < 1 then
2: Assign default and backup instances for request 𝛾 according to

scheme 𝜓∗

3: 𝛼𝑡,𝛾 ← 𝑏𝛾 (1 −𝐾𝜓∗)

4: ∀𝑛𝑖, 𝑛𝑗 ∶ 𝛽𝑛𝑖 ,𝑛𝑗 ← 𝛽𝑛𝑖 ,𝑛𝑗 (1 +
𝜃𝜓𝑖,𝑗 ⋅𝑏𝛾
𝐶𝑗𝑛

) +
𝜃𝜓𝑖,𝑗 ⋅𝑏𝛾
ℎ2⋅𝜑⋅𝐶𝑗𝑛

5: else
6: Reject request 𝛾 and set 𝛼(𝑡, 𝛾) ← 0

4.4. Performance analysis

The feasibility of the proposed PTRS algorithm is proved before the
performance analysis.

Lemma 7. When PTRS completes, its solution will not violate the
onstraints in the dual program Eq. (17).

roof. Eq. (17) presents two constraints. We first consider the second
et of constraints in Eq. (17). At the beginning, PTRS sets all the dual
ariables to 0, so the positivity of the second constraint is satisfied.
iven 𝑛𝑖, 𝑛𝑗 ∈ 𝑁, 𝑛𝑖 ≠ 𝑛𝑗 , when dual variables 𝛽𝑛𝑖 ,𝑛𝑗 are updated,
ccording to the update rules in Eq. (21), they will never be decreased.
urthermore, the update rule, i.e., 𝛼𝑡,𝛾 ← 𝑏𝛾 (1−𝐾𝜓∗), can guarantee that
𝑡,𝛾 is positive because only the request with 𝐾𝜓∗ < 1 will be accepted.
herefore, the second set of inequalities in Eq. (17) is satisfied after
TRS ends.

Now, we consider the constraints from the first set of inequalities
n Eq. (17). For each request, we will determine a scheduling scheme
, which has the lowest price 𝐾𝜓∗ . According to Line 10 of Alg. 2, if

this request is rejected, we have 𝐾𝜓∗ ≥ 1 and the right side of Eq. (18)
ill be negative. Because the dual variable 𝛼𝑡,𝛾 is nonnegative, it will

atisfy the first constraint set in Eq. (17). If the request of tenant 𝑡 is
7

𝛽

ccepted, combining with the definition of 𝐾𝜓 and the update rule of
lg. 2, it follows:

𝑡,𝛾 = 𝑏𝛾 (1 −𝐾𝜓∗) ≥ 𝑏𝛾
⎛

⎜

⎜

⎝

1 −
∑

𝑛𝑖 ,𝑛𝑗 ,𝑛𝑖≠𝑛𝑗

𝜃𝜓𝑖,𝑗 ⋅ 𝛽𝑛𝑖 ,𝑛𝑗

⎞

⎟

⎟

⎠

(22)

The above inequality is the same as the first set of constraints in
Eq. (17). Thus, the update of dual variables 𝛼𝑡,𝛾 meets the first set of
constraints in Eq. (17). In addition, since the update rule of the dual
variables 𝛽𝑛𝑖 ,𝑛𝑗 will not make the right side greater, it means that the
constraints will not be violated. Thus, we can conclude that the first set
of constraints in Eq. (17) is also always satisfied.

We define the competitive ratio according to [26] for the perfor-
mance analysis of PTRS.

Definition 1. An online algorithm is [𝜁, 𝜂] competitive if it achieves at
least 𝜁 ⋅𝑂𝑃𝑇 , where 𝑂𝑃𝑇 is the result of the optimal solution, and the
constraints are violated by a factor 𝜂 at most.

It is apparent that we hope PTRS can achieve performance close
to that of the optimal solution, i.e., 𝜁 → 1, and 𝜂 → 1. But in fact, it
is difficult for any online algorithm to obtain the above performance
since the TRS problem is NP-hard. We will prove that the competitive
ratio of our PTRS algorithm is [1 − 𝜖, 𝑂(logℎ + log 1

𝜖)] in the following.

Lemma 8. The system throughput of PTRS is at least (1−𝜖) ⋅𝑂𝑃𝑇 , where
𝑂𝑃𝑇 is the solution of the optimal method.

Proof. When request 𝛾 is accepted, the PTRS algorithm will increase
the value of the optimization objective by 𝑏𝛾 , but the value of the
optimization objective in the dual program is only increased by 𝛥𝑖
according to the update rules of dual variables in Alg. 2:

𝛥𝑖 = 𝑏𝛾 (1 −𝐾𝜓∗)

+
∑

𝑛𝑖 ,𝑛𝑗 ,𝑛𝑖≠𝑛𝑗

(

𝛽𝑛𝑖 ,𝑛𝑗 ⋅
𝜃𝜓𝑖,𝑗 ⋅ 𝑏𝛾

𝐶𝑗𝑛
+

𝜃𝜓𝑖,𝑗 ⋅ 𝑏𝛾

ℎ2 ⋅ 𝜑 ⋅ 𝐶𝑗𝑛

)

⋅ 𝐶𝑗𝑛

= 𝑏𝛾 −
∑

𝑛𝑖 ,𝑛𝑗 ,𝑛𝑖≠𝑛𝑗

𝜃𝜓𝑖,𝑗 ⋅ 𝛽𝑛𝑖 ,𝑛𝑗 ⋅ 𝑏𝛾

+
∑

𝑛𝑖 ,𝑛𝑗 ,𝑛𝑖≠𝑛𝑗

(

𝛽𝑛𝑖 ,𝑛𝑗 ⋅
𝜃𝜓𝑖,𝑗 ⋅ 𝑏𝛾

𝐶𝑗𝑛
+

𝜃𝜓𝑖,𝑗 ⋅ 𝑏𝛾

ℎ2 ⋅ 𝜑 ⋅ 𝐶𝑗𝑛

)

⋅ 𝐶𝑗𝑛

≤ 𝑏𝛾 +
𝑏𝛾

ℎ2 ⋅ 𝜑
⋅ ℎ2 ⋅ 𝐵∗ = (1 + 𝜖) ⋅ 𝑏𝛾 (23)

It means that the objective of the dual program is increased by at
ost (1 + 𝜖)𝑏𝛾 through the PTRS algorithm. Thus, the overall value of

the optimization objective in the dual program is at least 1∕(1+𝜖) ≥ 1−𝜖
imes as that of the optimal solution. As a result, the system throughput
chieved by the PTRS algorithm is at least (1 − 𝜖) ⋅ 𝑂𝑃𝑇 .

Now, we analyze the violation extent of the processing capacity
onstraints on NF instances. For each request 𝛾 and scheduling scheme
, let 𝐿(𝑛𝑗 , 𝛾) be the load on 𝑛𝑗 after request 𝛾 has been processed. It

hould be noted that 𝐿(𝑛𝑗 , 𝛾) includes the incremental load rescheduled
rom other NF instances.

emma 9. For each request 𝛾𝑘, and its scheduling scheme 𝜓 , we have:

𝛽𝑛𝑖 ,𝑛𝑗 ,𝑘 ≥
exp[𝐿(𝑛𝑗 , 𝑘)∕𝐶

𝑗
𝑛] − 1

ℎ2 ⋅ 𝜑
(24)

Proof. By the induction of request 𝛾𝑘, 𝑘 = 1, 2,… , |𝛤 − 1|, we prove the
lemma as follows. At the beginning, for all 𝑛𝑖 and 𝑛𝑗 , 𝛽𝑛𝑖 ,𝑛𝑗 ,𝑘 = 𝐿(𝑛𝑗 , 0) =
0. Thus, the inequality holds. During the running of Alg. 2, 𝛽𝑛𝑖 ,𝑛𝑗 ,𝑘 will
be updated. For clarity purpose, we use 𝛽𝑛𝑖 ,𝑛𝑗 ,𝑘 to denote the value of

𝑛𝑖 ,𝑛𝑗 after request 𝛾𝑘 is processed. For each arrival request 𝛾𝑘, if 𝛾𝑘

Computer Networks 215 (2022) 109212H. Tu et al.

B
𝛽

𝛽

I
d
s
u

e

L
v
a

P

t
P
C
t
A
o

𝛽

C

f

is rejected by the algorithm, the values of 𝛽𝑛𝑖 ,𝑛𝑗 and 𝐿(𝑛𝑗 , 𝑘) will not
change, i.e., 𝛽𝑛𝑖 ,𝑛𝑗 ,𝑘 = 𝛽𝑛𝑖 ,𝑛𝑗 ,𝑘−1 and 𝐿(𝑛𝑗 , 𝑘) = 𝐿(𝑛𝑗 , 𝑘− 1). Therefore, the
inequality still holds. If request 𝛾𝑘 is not rejected by the algorithm, we
have: 𝐿(𝑛𝑗 , 𝑘) = 𝐿(𝑛𝑗 , 𝑘 − 1) + 𝜃𝜓𝑖,𝑗 ⋅ 𝑏𝛾 . Combining with the update rule
of 𝛽𝑛𝑖 ,𝑛𝑗 ,𝑘 in Eq. (21), we also have:

𝛽𝑛𝑖 ,𝑛𝑗 ,𝑘 = 𝛽𝑛𝑖 ,𝑛𝑗 ,𝑘−1 ⋅

(

1 +
𝜃𝜓𝑖,𝑗 ⋅ 𝑏𝛾

𝐶𝑗𝑛

)

+
𝜃𝜓𝑖,𝑗 ⋅ 𝑏𝛾

ℎ2 ⋅ 𝜑 ⋅ 𝐶𝑗𝑛
(25)

y induction hypothesis, we apply inequality

𝑛𝑖 ,𝑛𝑗 ,𝑘−1 ≥
exp[𝐿(𝑛𝑗 ,𝑘−1)∕𝐶

𝑗
𝑛]−1

ℎ2⋅𝜑
to Eq. (25) and obtain:

𝑛𝑖 ,𝑛𝑗 ,𝑘 ≥
exp[𝐿(𝑛𝑗 , 𝑘 − 1)∕𝐶𝑗𝑛] − 1

ℎ2 ⋅ 𝜑

(

1 +
𝜃𝜓𝑖,𝑗 ⋅ 𝑏𝛾

𝐶𝑗𝑛

)

+
𝜃𝜓𝑖,𝑗 ⋅ 𝑏𝛾

ℎ2𝜑𝐶𝑗𝑛

= 1
ℎ2 ⋅ 𝜑

[

exp
[

𝐿(𝑛𝑗 , 𝑘 − 1)

𝐶𝑗𝑛

](

1 +
𝜃𝜓𝑖,𝑗 ⋅ 𝑏𝛾

𝐶𝑗𝑛

)

− 1

]

≈ 1
ℎ2 ⋅ 𝜑

[

exp
[

𝐿(𝑛𝑗 , 𝑘 − 1)

𝐶𝑗𝑛

]

exp
[

𝜃𝜓𝑖,𝑗 ⋅ 𝑏𝛾

𝐶𝑗𝑛

]

− 1

]

=
exp[𝐿(𝑛𝑗 , 𝑘)∕𝐶

𝑗
𝑛] − 1

ℎ2 ⋅ 𝜑
(26)

n the above derivation, for a small positive value 𝑥, the first or-
er approximation exp(𝑥) ≈ 1 + 𝑥 is applied. We can establish the
trict inequality by a more complicated update rule, but it will incur
nnecessary complexity and difficulty. Thus, Lemma 9 holds.

Now, we give the following lemma, which presents the violation
xtent of processing capacity constraint on an NF instance.

emma 10. The processing constraint on an NF instance will not be
iolated by a factor of 𝑂(logℎ + log(1∕𝜖)) through the proposed PTRS
lgorithm.

roof. Without loss of generality, if an arbitrary NF instance 𝑛𝑖 fails,
we consider the violation of the processing capacity constraint on NF
instance 𝑛𝑗 . Alg. 2 will update the value of 𝛽𝑛𝑖 ,𝑛𝑗 only if 𝐾𝜓∗ < 1. Under
his case, PTRS will accept this request, and we have 𝜃𝜓𝑖,𝑗 ≠ 0. If 𝐾𝜓∗ ≥ 1,
TRS will not change the value of 𝛽𝑛𝑖 ,𝑛𝑗 according to Line 14 of Alg. 2.
ombining that 𝐾𝜓∗ =

∑

𝑛𝑖 ,𝑛𝑗 ,𝑛𝑖≠𝑛𝑗 𝜃
𝜓
𝑖,𝑗 ⋅ 𝛽𝑛𝑖 ,𝑛𝑗 , we have 𝛽𝑛𝑖 ,𝑛𝑗 ≤ 1 before

he last update of 𝛽𝑛𝑖 ,𝑛𝑗 . Next, we consider the last update of 𝛽𝑛𝑖 ,𝑛𝑗 .
ccording to the definition of 𝐵∗ given in Eq. (19) and the update rule
f 𝛽𝑛𝑖 ,𝑛𝑗 in Line 13 of Alg. 2, we have:

𝑛𝑖 ,𝑛𝑗 ≤ 1 +
𝜃𝜓𝑖,𝑗 ⋅ 𝑏𝛾

𝐶𝑗𝑛
+

𝜃𝜓𝑖,𝑗 ⋅ 𝑏𝛾

ℎ2 ⋅ 𝜑 ⋅ 𝐶𝑗𝑛
≤ 1 + 2𝐵∗ (27)

ombining with Eq. (24), it follows:
𝐿(𝑛𝑗 , 𝑘)

𝐶𝑗𝑛
≤ log((2𝐵∗ + 1) ⋅ ℎ2 ⋅ 𝜑 + 1) = 𝑂(logℎ + log 1

𝜖
) (28)

It means that PTRS will not violate the load on NF instance 𝑛𝑗 by a
actor of 𝑂(logℎ + log 1

𝜖) at most when the failure of NF instance 𝑛𝑖
occurs. Since two instances 𝑛𝑖 and 𝑛𝑗 are chosen arbitrarily, we can
apply the above performance analysis for all schemes.

Then, combining Lemmas 8 and 10, the competitive ratio of Alg. 2
can be induced in the follow theorem.

Theorem 11. The proposed PTRS algorithm can achieve the competitive
ratio of [1 − 𝜖, 𝑂(logℎ + log(1∕𝜖))], where 𝜖 ∈ (0, 1), and ℎ represents the
number of NF instances in clouds.

4.5. Dealing with failure of multiple NF instances

Since the failure probability of multiple instances is very low (e.g.,
8

0.47%), we believe that choosing one backup instance for each request
has met most needs. Thus, this paper mainly focuses on the scenario of
single instance failure and discusses how to deal with multiple instance
failures only in this section. Specifically, when multiple instances fail
simultaneously, only minor modifications to PTRS can make it still ap-
plicable. Take the simultaneous failure of two instances as an example.
Similar to 𝜓 defined in Section 4.2, let 𝜙 be the scheduling scheme
with one default instance and two backup instances. We can use 𝜅𝜙𝑖,𝑗,𝑙
to denote that whether the request with scheme 𝜙 will be scheduled to
instance 𝑛𝑙 when 𝑛𝑖 and 𝑛𝑗 fail. Once 𝜅𝜙𝑖,𝑗,𝑙 is determined, the problem
formulation with multiple instance failures can be formulated as a
linear program like Eq. (16), which can be solved with a similar
primal–dual algorithm.

5. Performance evaluation

We first introduce the performance metrics and benchmarks in
Section 5.1, then give the experimental results on a real testbed in
Section 5.3. Last, the large-scale simulation results are presented in
Section 5.2.

5.1. Performance metrics and benchmarks

5.1.1. Performance metrics
For performance comparison, we adopt the following six perfor-

mance metrics: (1) the maximum number of tenants that an NF instance
provides services to at any time when the system is running; (2)
the system throughput; (3) the traffic load of NF instances; (4) flow
completion time (FCT) [27]; (5) recovery time after a failure occurs
and (6) control traffic overhead [12].

During the execution of the system, we measure how many tenants
an NF instance serves and use their largest values as the first metric
during the simulation. This metric shows the degree of negative effect
caused by the failure of an NF instance, i.e., the cloud robustness.
As the number of requests is continuously increased, the maximum
throughput that the system can support is measured for the second
metric, which is an important indicator of system performance [28].
The last four metrics are measured through a small-scale testbed, since
the they cannot be easily obtained in the simulation, we measure these
metrics through a small-scale testbed. Specifically, Packet Generator
(PktGen) [29] is adopted in testbed to generate network traffic. PktGen
is a powerful tool also used by [30,31]. With the help of it, we can
generate requests with different traffic sizes/patterns, and collect the
information of FCT/load by PktGen APIs. When encountering an NF
instance failure during the experiment, we record the time consumption
of migrating all requests from the failed instance to corresponding
backup instance(s) as the recovery time. Furthermore, we measure the
total traffic amount between the data plane and the centralized plane
during failure recovery procedure, and record these traffic consumption
as control traffic overhead.

5.1.2. Benchmarks
We compare the proposed RoNS scheme with other three bench-

marks. The first benchmark is the request-based backup (RQB) scheme
[32–34], in which each request has a default instance and a backup
instance. Note that, the RQB method refers to a class of failure recovery
methods, and the optimization goals of these works [32–34] are differ-
ent. For fair comparison, we modify the methods in [32–34] so that the
optimization goals are the same to that of our proposed algorithm, i.e.,
maximizing the system throughput. Specifically, RQB adopts a greedy-
based online bin packing algorithm to assign default and backup NF
instances. Two NF instances with the largest residual processing capac-
ity will be chosen as the default and backup NF instances, respectively,
for each incoming request. The second benchmark is the NF-based
backup (NFB) scheme [8–11,35], in which each NF instance is assigned
a backup one. That is, when an NF instance fails, all requests on this NF
instance will be migrated to the backup one. According to [8–11,35],

Computer Networks 215 (2022) 109212H. Tu et al.

R
p
o
R

l
l
M
w
a

the second benchmark first selects an NF instance in the network as the
backup one, then schedules traffic to the remaining instances. When
an NF instance fails, the control plane reschedules the traffic from the
failed NF instance to the backup one. It should be noted that, both RQB
and NFB do not limit the number of tenants served by each NF instance
and the failure recovery process involves the centralized control plane,
resulting in large influence scope and long recovery time. The third
benchmark is OPT-LP. We first replace 𝑧𝜓𝑡,𝛾 ∈ {0, 1} with 𝑧𝜓𝑡,𝛾 ∈ [0, 1]
in Eq. (16) and then derive the results of OPT-LP by optimally solving
the relaxed tenant request scheduling problem. It should be noted that
since OPT-LP adopts KNIT to solve the NF instance allocation problem,
OPT-LP can also meet the requirement of limited influence scope. The
results of OPT-LP are the upper bound of our algorithm, and are used
to verify the gap between our method and the optimal solution.

5.2. Simulation evaluation

5.2.1. Simulation settings
Two practical topologies with different network sizes are chosen to

evaluate the performance of the proposed methods. The first one is a
small-scale NSF network topology [36], denoted by (a), which contains
16 NF instances. Since this topology does not contain the information of
compute nodes and tenants, we set the number of compute nodes as 480
according to the ratio of 1:30. This ratio has been verified in the Google
cluster-data [37]. In addition, the number of tenants on this topology is
equal to that of the compute nodes. The second topology, denoted by
(b), comes from Google cluster-data [37]. Topology (b) contains 324
NF instances and 10 047 compute nodes. The number of tenants is set
to 1000. The traffic size of each request is generated according to the
traffic trace in Google cluster-data [37]. Besides, 𝑝 is set to 60/100 for
topologies (a)/(b) by default.

5.2.2. Simulation scenarios
To thoroughly verify the performance of RoNS, we conduct the

simulation under two scenarios. The first scenario, denoted as (i),
does not consider the requirement of limited influence scope once a
failure occurs (Section 2.1) for RQB and NFB. Under this scenario, we
mainly focus on the metrics of the maximum number of tenants served
by an NF instance and the system throughput. The purpose of this
scenario is to verify that RoNS can limit the influence scope once an NF
failure occurs, while achieving throughput performance close to that of
other benchmarks. The second scenario, denoted as (ii), considers the
requirement of limited influence scope for RQB and NFB. That is, same
as our algorithm, each NF instance serves at most 𝑝 tenants through
RQB and NFB. Under this scenario, we mainly focus on the metric
of system throughput. The purpose of this scenario is to verify that
although RQB and NFB can be modified to meet the requirement of
limited influence scope, their throughput is much lower than that of
our algorithm.

5.2.3. Performance comparison in Scenario (i)
Our first set of simulations is conducted in the scenario (i), where

RQB and NFB do not consider the limited influence scope requirement.
The results are shown in Figs. 2–4. Fig. 2 shows how the number of
requests affects the maximum number of tenants that an NF instance
serves. From the simulation results, it is observed that RoNS can always
perform better than both NFB and RQB, since these two benchmarks do
not consider the requirement of limited influence scope. For example,
in the right plot of Fig. 2, when there are 200𝐾 requests, the maximum
number of tenants served by an NF instance are 420, 251, 100 and 100
corresponding to NFB, RQB, RoNS and OPT-LP, respectively. That is,
RoNS can reduce the maximum number of affected tenants by 76.2%
and 60.2% compared with NFB and RQB, respectively. Since the NF
instance allocation algorithm of OPT-LP is the same as that of RoNS,
9

OPT-LP has the same performance as RoNS on this metric. R
Fig. 2. Max. No. of tenants vs. No. of requests in Scenario (i) Left plot : Topology (a);
right plot : Topology (b).

Fig. 3. Throughput vs. No. of requests in Scenario (i) Left plot : Topology (a); right plot :
Topology (b).

Fig. 4. Throughput vs. 𝑝 in Scenario (i) Left plot : Topology (a); right plot : Topology
(b).

Fig. 3 depicts how the number of request affects the system through-
put. As the number of requests increases, the system throughput of
all algorithms increases on both topologies. RoNS achieves similar
performance compared with OPT-LP and NFB, and better performance
compared with RQB. Specifically, the system throughput gap between
our algorithm and OPT-LP, NFB is less than 5%. Since NFB does
not consider the limited influence scope requirement, the throughput
achieved by NFB is slightly higher than that of RoNS. In addition, given
10𝐾 requests, RoNS can increase the system throughput by about 78.7%
compared with RQB in the left plot of Fig. 3. From these simulation
results, we conclude that RoNS can improve the system robustness at
the expense of less than 5% throughput.

Fig. 4 investigates system throughput by changing the value of 𝑝
when there are 10𝐾 requests. The results show that the throughput of
RoNS is very close to that of NFB and OPT-LP, and greater than that of
RQB, with the increasing of 𝑝. For example, given 𝑝 = 60 in the left plot
of Fig. 4, the system throughputs achieved by OPT-LP, NFB, RoNS and
RQB are 239.3 Gbps, 238.1 Gbps, 228.6 Gbps and 127.9 Gbps, respec-
tively. Moreover, when 𝑝 is greater than 60, the system throughputs of

oNS and OPT-LP remain and are very close to that of NFB. Since NFB
rocesses requests as much as possible, regardless of the requirement
f limited influence scope, the performance of NFB is close to that of
oNS.

From Figs. 2–4, we can conclude that without considering the
imited influence scope requirement, both NFB and RQB will affect a
ot of tenants when a failure occurs, resulting in low cloud robustness.
eanwhile, RoNS can limit the influence scope once a failure occurs
hile achieving almost the same throughput performance as OPT-LP
nd NFB, and much better throughput performance compared with

QB.

Computer Networks 215 (2022) 109212H. Tu et al.

p

(

5

R
s
m
t
r
a
2
R
a
t

b
f
w

a
p
o
i

Fig. 5. Throughput vs. No. of requests in Scenario (ii) Left plot : Topology (a); right
lot : Topology (b).

Fig. 6. Throughput vs. 𝑝 in Scenario (ii) Left plot : Topology (a); right plot : Topology
b).

.2.4. Performance comparison in Scenario (ii)
The second set of simulations is conducted in the scenario where

QB and NFB take the limited influence scope requirement into con-
ideration. That is, same as our algorithm, each NF instance serves at
ost 𝑝 tenants. The results are shown in Figs. 5–6. As shown in Fig. 5,

he throughput achieved by all algorithms increases as the number of
equests increases. The performance of RoNS is close to that of OPT-LP
nd far better than that of NFB and RQB. For example, when there are
20𝐾 requests in the right plot in Fig. 5, the gap between OPT-LP and
oNS is less than 5%. Besides, RoNS can increase throughput by 198%
nd 352.6% compared with NFB and RQB, respectively. Fig. 6 shows
hat, when the value of 𝑝 increases given 200𝐾 requests, the throughput

achieved by RoNS is better than that of NFB and RQB. For example,
when 𝑝 = 60, RoNS can improve the throughput by 288.5% and 395.2%
compared with NFB and RQB, respectively, by the left plot of Fig. 6.
The reason is that the limited influence scope requirement restricts the
system throughputs of NFB and RQB.

From these simulation results, we can draw some conclusions. First,
y Fig. 2, RoNS can significantly reduce the maximum number of af-
ected tenants, thereby improving the system robustness. For example,
hen there 10𝐾 request in topology (a), RoNS can reduce the number

of affected tenants by 76.2% and 60.2% compared with NFB and RQB,
respectively. Second, from Figs. 3–4, the system throughput loss caused
by limited influence scope requirement in RoNS does not exceed 5%
compared with other benchmarks that ignore this requirement. Third,
from Figs. 5–6, RoNS can achieve better throughput performance when
NFB and RQB consider the limited influence scope requirement. For
example, RoNS improves the system throughput by about 288.5% and
395.2% compared with NFB and RQB, respectively, in topology (a).

5.3. Testbed evaluation

5.3.1. Testbed settings
We implement RoNS and other benchmarks on a real testbed to

evaluate their performance. Specifically, we use OpenStack [38] to
construct the topology with six compute nodes and six NF instances,
all with Ubuntu 18.04 OS, 4-Core vCPU and 8G of RAM. Moreover, all
NF instances are running the static network address translation (SNAT),
which is a typical service in cloud computing environments. During
the system running, we randomly turn off an instance to simulate an
instance failure. The instance with ID 1 is used as a standby instance
10

for the NFB algorithm by default. That is, for the NFB algorithm, the d
standby instance will start processing requests when an instance fails.
Besides, we use a server with a core i7-8700k and 32 GB of RAM as the
controller. The controller is mainly responsible for traffic scheduling,
as well as monitoring the status of NF instances and restoring traffic
processing by installing new flow entries for comparison algorithms.
The testbed contains 20 tenants, and 𝑝 is set to 10 by default. We im-
plement our experiments with traffic trace in Google cluster-data [37].
The number of requests ranges from 200 to 800. We adopt Packet
Generator (PktGen) [29] to generate requests and load information of
each instance.

5.3.2. NF instance performance
Fig. 7 shows the performance of each NF instance. We generate

400 requests in total and schedule these requests to NF instances
based on the results of algorithms. Figs. 7(a) and 7(b) show the load
information of each NF instance before and after an NF instance failure,
respectively. The results show that the total throughput of RoNS is close
to that of NFB and RQB. Moreover, no matter before or after failure,
the maximum load among NF instances through RoNS is lower than
that of RQB and NFB. Fig. 7(c) depicts the number of tenants served
by each NF instance. We observe that the number of tenants served by
any instance through RoNS is much smaller than that of RQB and NFB.
Specifically, RoNS can reduce the average number of tenants served
by an instance by about 50% compared with other benchmarks. It
indicates better system robustness of RoNS.

5.3.3. Failure recovery performance
In Fig. 8, we investigate the failure recovery performance by chang-

ing the number of requests. During the system running, we randomly
turn off an instance to simulate an instance failure, and then mea-
sure the delay and control traffic overhead required to recovery the
processing of requests served by the failed instance. When an NF
failure occurs, the comparison algorithms need to be aware of failures,
compute new routing paths and install the corresponding forwarding
rules to reroute requests. With the help of agents designed in the data
plane, the failure recovery of RoNS is decoupled from the centralized
control plane, thereby reducing recovery time significantly. Fig. 8(a)
shows that the recovery time of RoNS is much lower than that of the
comparison algorithms as the number of requests grows. For example,
when there are 400 requests, the recovery time of RoNS, RQB and
Standy are 315.94 ms, 1165 ms and 1200 ms, respectively. Fig. 8(b)
shows that the control traffic overhead grows when the number of
requests increases for NFB and RQB. In contrast, the control traffic
overhead of RoNS during the failure recovery procedure is always zero,
since our algorithm does not require the participation of the centralized
controller for failure recovery. When there are more than 600 requests,
the requests served by RQB is close to saturation, so the growth trend
of its recovery time and control traffic overhead slows down. Fig. 8(c)
shows the FCT performance of 400 requests. We observe that there are
66 and 80 requests with FCT over 1000 ms through RQB and NFB,
respectively. Since RoNS can achieve a much lower recovery time, the
FCT performance of RoNS is better than that of benchmarks.

5.3.4. Limited influence scope performance
Since every tenant hopes their traffic to be processed as quickly

as possible, the nearly last FCT can be a meaningful metric to mea-
sure the QoS of tenants [39]. Thus, we study how the failure of an
instance affects the 99%tile FCT of each tenant in Fig. 9. From the
testbed results, we see that the average 99%tile FCT among tenants of
RoNS is much lower than that of other benchmarks. For example, the
average 99%tile FCTs of RoNS, RQB and NFB are 188.1 ms, 1163.3 ms
nd 1199.3 ms, respectively. There are two reasons for the significant
erformance improvement of RoNS. First, since RoNS limits the number
f tenants served by an instance, the scope of the affected tenants
s limited once an NF instance fails. Second, with the help of agents
esigned in the data plane, the failure recovery time is much lower

Computer Networks 215 (2022) 109212H. Tu et al.
Fig. 7. NF instance performance.
Fig. 8. Failure recovery performance.
Fig. 9. 99%tile FCT vs. Tenant ID for limited influence scope performance comparison.
than that of benchmarks. Thus, RoNS performs better than benchmarks
in terms of 99%tile FCT.

According to the above experiment results, we can draw the fol-
lowing conclusions. First, Figs. 7–8 show that RoNS can achieve much
better failure recovery performance (recovery time, control traffic over-
head and FCT) when encountering an instance failure with similar
throughput performance to benchmarks. Second, according to Fig. 9,
RoNS can achieve much lower 99%tile FCT of each tenant through
limiting the influence scope and fast failure recovery with the help of
agents.

6. Related works

The problem of request scheduling on NFs has been widely stud-
ied in recent years for different targets, such as utility maximiza-
tion, throughput optimization or latency minimization [40–42]. Gu
et al. [40] investigate how to manage the resource of NF instances
(i.e., deactivation and activation of NF instances). The authors also
11
study request scheduling algorithm for the purpose of maximizing
the overall network utility, while taking various costs and end-to-
end delay into consideration. Since this problem is formulated as a
non-convex program, it is difficult to design a heuristic algorithm to
obtain the optimal solution. Thus, they resort to the deep reinforce-
ment learning technique, which has low computation complexity. The
authors in [41] study the runtime request scheduling problem to satisfy
service function chaining (SFC) requirement. They design an integer
allocation maximum pressure policy, which can achieve nearly optimal
throughput. To apply their method in the large-scale distributed system,
they also present a multi-site cooperative algorithm called STEAM,
which can achieve performance close to that of the optimal solution and
also fulfill the runtime requirements. Liu et al. [42] study the request
scheduling problem by jointly considering multiple resource constraints
and dynamic NF instance placement. They devise an auxiliary weighted
graph for this problem, then propose two algorithms to solve it. Their
optimization goal is to minimize the cost of resource consumption while
satisfying multiple QoS constraints.

Computer Networks 215 (2022) 109212H. Tu et al.
Although these works have conducted in-depth research on request
scheduling for NFs with different optimization targets, they ignore NF
failures and their impact on system robustness. To deal with NF failure,
the currently popular approach is to deploy backup NF instances using
network function virtualization (NFV) technique [8–11,32–35]. After
an NF instance fails, the centralized control plane reschedules the
requests from the failed instance to the backup one. Backup-based
failure recovery can be divided into two categories. The first one is
called request-based backup scheme for simplicity, in which each request
has a default and backup instance. The request-based backup scheme
is adopted by [32–34]. For example, the authors in [32] proposes a
control plane called OpenNF, which provides a replicated state for each
request on the assigned backup instance. OpenNF’s southbound API
defines a standard NF interface for the control plane to reschedule
requests to the assigned backup instance. Tomassilli et al. [33] consider
building a failure recovery scheme with the global rerouting strategy in
which a new routing to the backup instance of each request is computed
for each failure situation. Their optimization object is to minimize the
amount of consumed bandwidth.

The second one is called NF-based backup scheme for simplicity,
in which each NF instance is assigned a backup one. Moreover, a
backup instance will only process requests if there are NF failures,
and it can be backup for multiple instances. The NF-based backup
scheme is adopted by [8–11,35]. For example, Li et al. [8] focus on
provisioning reliable network service under the scenario of mobile
edge-cloud (MEC), by placing primary and backup NF instances to
cloudlets, so that the service reliability requirements of users can be
guaranteed. They formulate it as an NF instance reliability problem,
and its optimization goal is to maximize the total revenue by processing
as many as users’ requests. The authors in [9] study the problem of how
to backup NF instances to minimize the cost in an online manner, and
propose a self-adaptive scheme named SAB to efficiently backup NF
instances over both the edge and the cloud. Zhang et al. [10] propose
to minimize the backup resource consumption while considering the
heterogeneous resource demands of different NFs. They formalize it
as the resource-aware backup allocation problem, and prove the NP-
hardness of this problem. Then they propose an approximate algorithm
based on differential evolution to solve it.

However, these works only focus on the deployment of backup NF
instances, and ignore the requirements of limited influence scope and
fast recovery time. Therefore, by their method, NF failures affect a
large number of tenants, and the failure recovery time will be too long
to be tolerated. Though there are works like [13,14] which propose
fast recovery mechanism for link failure, their method can only handle
link failures, not NF failures. For example, Petale et al. [13] propose
the link failure recovery mechanism through the fast failover group
table feature provided by OpenFlow. They store the forwarding rules of
the backup paths in the fast failover group table. When the OpenFlow
switch detects a link failure, it will forward packets through the backup
paths.

Different from all the discussed works above, to deal with NF fail-
ures, this paper proposes to control the influence scope of NF failures
by limiting the number of served tenants on each NF instance while
scheduling requests. Moreover, this paper presents the design of agents
in the data plane which can achieve fast failure recovery without the
participation of the centralized control plane.

7. Conclusion

This paper investigates building robust network function services
(RoNS) in clouds. To limit the influence scope once a failure occurs,
RoNS limits the number of tenants served by an NF instance. To
achieve fast failure recovery, RoNS design agents in the data plane.
Due to traffic dynamics, RoNS takes a two-phase approach: NF instance
allocation and tenant request scheduling. Two algorithms with bounded
approximation factors have been designed to for these two phases. Both
experiment and simulation results show the high performance of our
12

proposed algorithms compared with state-of-the-art solutions.
CRediT authorship contribution statement

Huaqing Tu: Conceptualization, Methodology, Writing – original
draft. Gongming Zhao: Formal analysis, Writing – review & edit-
ing. Hongli Xu: Methodology, Writing – review & editing. Yangming
Zhao: Writing – review & editing. Yuhang Qiu: Software, Validation.
Liusheng Huang: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The authors are unable or have chosen not to specify which data
has been used.

Acknowledgment

The corresponding authors of this paper are Gongming Zhao and
Hongli Xu. This work was supported by the National Science Founda-
tion of China under Grants No. 62132019, 62102392; and in part by
Open Research of Projects of Zhejiang Lab (No. 2022QA0AB04); and
in part by the Natural Science Foundation of Jiangsu Province under
Grant BK20210121.

References

[1] R. Kumar, S. Charu, An importance of using virtualization technology in cloud
computing, Glob. J. Comput. Technol. 1 (2) (2015).

[2] The amazon web service, URL http://www.aws.amazon.com/.
[3] The google cloud platform, URL http://www.cloud.google.com/.
[4] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, A. Ghalsasi, Cloud computing

the business perspective, Decis. Support Syst. 51 (1) (2011) 176–189.
[5] K. Gai, J. Guo, L. Zhu, S. Yu, Blockchain meets cloud computing: a survey, IEEE

Commun. Surv. Tutor. 22 (3) (2020) 2009–2030.
[6] A. Engelmann, A. Jukan, A reliability study of parallelized VNF chaining, in:

2018 IEEE International Conference on Communications (ICC), IEEE, 2018, pp.
1–6.

[7] R. Potharaju, N. Jain, Demystifying the dark side of the middle: a field study
of middlebox failures in datacenters, in: Proceedings of the 2013 Conference on
Internet Measurement Conference, 2013, pp. 9–22.

[8] J. Li, W. Liang, M. Huang, X. Jia, Reliability-aware network service provisioning
in mobile edge-cloud networks, IEEE Trans. Parallel Distrib. Syst. 31 (7) (2020)
1545–1558.

[9] X. Shang, Y. Huang, Z. Liu, Y. Yang, Reducing the service function chain backup
cost over the edge and cloud by a self-adapting scheme, IEEE Trans. Mob.
Comput. (2021).

[10] J. Zhang, Z. Wang, C. Peng, L. Zhang, T. Huang, Y. Liu, Raba: Resource-
aware backup allocation for a chain of virtual network functions, in: IEEE
INFOCOM 2019-IEEE Conference on Computer Communications, IEEE, 2019, pp.
1918–1926.

[11] X. Shang, Y. Liu, Y. Mao, Z. Liu, Y. Yang, Greening reliability of virtual
network functions via online optimization, in: 2020 IEEE/ACM 28th International
Symposium on Quality of Service (IWQoS), IEEE, 2020, pp. 1–10.

[12] G. Zhao, H. Xu, J. Liu, C. Qian, J. Ge, L. Huang, Safe-me: Scalable and flexible
middlebox policy enforcement with software defined networking, in: 2019 IEEE
27th International Conference on Network Protocols (ICNP), IEEE, 2019, pp.
1–11.

[13] S. Petale, J. Thangaraj, Link failure recovery mechanism in software defined
networks, IEEE J. Sel. Areas Commun. 38 (7) (2020) 1285–1292.

[14] A. Tomassilli, G. Di Lena, F. Giroire, I. Tahiri, D. Saucez, S. Perennes, T. Turletti,
R. Sadykov, F. Vanderbeck, C. Lac, Poster: design of survivable SDN/NFV-enabled
networks with bandwidth-optimal failure recovery, in: 2019 IFIP Networking
Conference (IFIP Networking), IEEE, 2019, pp. 1–2.

[15] S. Yang, F. Li, R. Yahyapour, X. Fu, Delay-sensitive and availability-aware virtual
network function scheduling for NFV, IEEE Trans. Serv. Comput. (2019).

[16] L. Mai, Y. Ding, X. Zhang, L. Fan, S. Yu, Z. Xu, Energy efficiency with service
availability guarantee for network function virtualization, Future Gener. Comput.
Syst. 119 (2021) 140–153.

[17] X. Fan, H. Xu, H. Huang, X. Yang, Real-time update of joint SFC and routing in

software defined networks, IEEE/ACM Trans. Netw. (2021).

http://refhub.elsevier.com/S1389-1286(22)00296-1/sb1
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb1
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb1
http://www.aws.amazon.com/
http://www.cloud.google.com/
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb4
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb4
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb4
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb5
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb5
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb5
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb6
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb6
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb6
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb6
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb6
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb8
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb8
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb8
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb8
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb8
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb9
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb9
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb9
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb9
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb9
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb10
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb10
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb10
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb10
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb10
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb10
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb10
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb11
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb11
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb11
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb11
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb11
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb12
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb12
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb12
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb12
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb12
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb12
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb12
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb13
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb13
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb13
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb14
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb14
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb14
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb14
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb14
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb14
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb14
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb15
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb15
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb15
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb16
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb16
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb16
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb16
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb16
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb17
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb17
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb17

Computer Networks 215 (2022) 109212H. Tu et al.
[18] A. Srinivasan, Approximation algorithms via randomized rounding: A survey,
2001, Series in Advanced Topics in Mathematics Polish Scientific Publishers Pwn.

[19] M. Hellman, J. Raviv, Probability of error, equivocation, and the Chernoff bound,
IEEE Trans. Inform. Theory 16 (4) (1970) 368–372.

[20] C. Tellambura, Evaluation of the exact union bound for trellis-coded modulations
over fading channels, IEEE Trans. Commun. 44 (12) (1996) 1693–1699.

[21] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A.
Wang, J. Stringer, P. Shelar, et al., The design and implementation of open
vswitch, in: 12th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 15), 2015, pp. 117–130.

[22] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, J. Turner, Openflow: enabling innovation in campus networks, ACM
SIGCOMM Comput. Commun. Rev. 38 (2) (2008) 69–74.

[23] Y.-D. Lin, H.-Y. Teng, C.-R. Hsu, C.-C. Liao, Y.-C. Lai, Fast failover and switchover
for link failures and congestion in software defined networks, in: 2016 IEEE
International Conference on Communications (ICC), IEEE, 2016, pp. 1–6.

[24] M. Borokhovich, L. Schiff, S. Schmid, Provable data plane connectivity with local
fast failover: Introducing openflow graph algorithms, in: Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, 2014, pp. 121–126.

[25] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, J. Wilkes, Large-
scale cluster management at Google with Borg, in: Proceedings of the Tenth
European Conference on Computer Systems, 2015, pp. 1–17.

[26] L. Guo, J. Pang, A. Walid, Joint placement and routing of network function
chains in data centers, in: IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, IEEE, 2018, pp. 612–620.

[27] N. Dukkipati, N. McKeown, Why flow-completion time is the right metric for
congestion control, ACM SIGCOMM Comput. Commun. Rev. 36 (1) (2006) 59–62.

[28] V.A. Rusakov, Using metrics in the throughput analysis and synthesis of undi-
rected graphs, in: International Conference on Integrated Science, Springer, 2020,
pp. 277–287.

[29] R. Olsson, Pktgen the linux packet generator, in: Proceedings of the Linux
Symposium, Vol. 2, Ottawa, Canada, 2005, pp. 11–24.

[30] G. Chen, Y. Lu, Y. Meng, B. Li, K. Tan, D. Pei, P. Cheng, L.L. Luo, Y. Xiong,
X. Wang, et al., Fast and cautious: Leveraging multi-path diversity for transport
loss recovery in data centers, in: 2016 {USENIX} Annual Technical Conference
({USENIX}{ATC} 16), 2016, pp. 29–42.

[31] W.-E. Chen, Packet forwarding enhancement for virtualized next-generation
core networks, in: 2018 27th Wireless and Optical Communication Conference
(WOCC), IEEE, 2018, pp. 1–2.

[32] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das, A.
Akella, Opennf: Enabling innovation in network function control, ACM SIGCOMM
Comput. Commun. Rev. 44 (4) (2014) 163–174.

[33] A. Tomassilli, G. Di Lena, F. Giroire, I. Tahiri, D. Saucez, S. Perennes, T. Turletti,
R. Sadykov, F. Vanderbeck, C. Lac, Design of robust programmable networks with
bandwidth-optimal failure recovery scheme, Comput. Netw. 192 (2021) 108043.

[34] H. Wang, H. Xu, H. Huang, M. Chen, S. Chen, Robust task offloading in dynamic
edge computing, IEEE Trans. Mob. Comput. (2021).

[35] J. Fan, M. Jiang, O. Rottenstreich, Y. Zhao, T. Guan, R. Ramesh, S. Das, C. Qiao,
A framework for provisioning availability of NFV in data center networks, IEEE
J. Sel. Areas Commun. 36 (10) (2018) 2246–2259.

[36] G. Sun, Z. Chen, H. Yu, X. Du, M. Guizani, Online parallelized service
function chain orchestration in data center networks, IEEE Access 7 (2019)
100147–100161.

[37] Google cluster-data, URL http://github.com/google/cluster-data/.
[38] O. Sefraoui, M. Aissaoui, M. Eleuldj, Openstack: toward an open-source solution

for cloud computing, Int. J. Comput. Appl. 55 (3) (2012) 38–42.
[39] N.K. Sharma, C. Zhao, M. Liu, P.G. Kannan, C. Kim, A. Krishnamurthy, A.

Sivaraman, Programmable calendar queues for high-speed packet scheduling, in:
17th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 20), 2020, pp. 685–699.

[40] L. Gu, D. Zeng, W. Li, S. Guo, A.Y. Zomaya, H. Jin, Intelligent VNF orchestration
and flow scheduling via model-assisted deep reinforcement learning, IEEE J. Sel.
Areas Commun. 38 (2) (2019) 279–291.

[41] M. Blöcher, R. Khalili, L. Wang, P. Eugster, Letting off STEAM: Distributed
runtime traffic scheduling for service function chaining, in: IEEE INFOCOM
2020-IEEE Conference on Computer Communications, IEEE, 2020, pp. 824–833.

[42] L. Liu, S. Guo, G. Liu, Y. Yang, Joint dynamical VNF placement and SFC routing
in NFV-enabled SDNs, IEEE Trans. Netw. Serv. Manag. (2021).
13
Huaqing Tu is currently pursuing the Ph.D. degree in com-
puter science at the University of Science and Technology
of China. Her main research interests are software-defined
networks and cloud computing.

Gongming Zhao received the Ph.D. degree in computer
software and theory from the University of Science and
Technology of China in 2020. He is currently an As-
sociate Professor with the University of Science and
Technology of China. His current research interests include
software-defined networks and cloud computing.

Hongli Xu received the B.S. degree in computer science and
the Ph.D. degree in computer software and theory from the
University of Science and Technology of China in 2002 and
2007, respectively. He is currently an Associate Professor
with the School of Computer Science and Technology,
University of Science and Technology of China. He has
authored or coauthored over 70 papers, and held about
30 patents. His main research interest is software-defined
networks, cooperative communication, and vehicular ad hoc
network.

Yangming Zhao is a research professor at school of com-
puter science and technology, University of Science and
Technology of China. Before that, he was a research scientist
with University at Buffalo. He received the B.S. degree
in communication engineering and the Ph.D. degree in
communication and information system from University
of Electronic Science and Technology of China in 2008
and 2015, respectively. His research interests include net-
work optimization, quantum networks, edge computing and
machine learning.

Yuhang Qiu received B.S. degree in 2021 from the Uni-
versity of Science and Technology of China. He is currently
a MA.Sc. candidate in the School of Computer Science and
Technology, University of Science and Technology of China.
His main research interests are software defined networks
and cloud computing.

Liusheng Huang received the M.S. degree in computer
science from the University of Science and Technology of
China in 1988. He is currently a Senior Professor and the
Ph.D. Supervisor with the School of Computer Science and
Technology, University of Science and Technology of China.
He has authored six books and over 300 journal/conference
papers. His research interests are in the areas of Internet of
Things, vehicular ad hoc network, information security, and
distributed computing.

http://refhub.elsevier.com/S1389-1286(22)00296-1/sb18
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb18
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb18
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb19
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb19
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb19
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb20
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb20
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb20
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb22
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb22
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb22
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb22
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb22
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb23
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb23
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb23
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb23
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb23
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb26
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb26
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb26
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb26
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb26
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb27
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb27
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb27
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb28
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb28
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb28
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb28
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb28
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb29
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb29
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb29
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb31
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb31
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb31
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb31
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb31
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb32
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb32
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb32
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb32
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb32
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb33
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb33
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb33
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb33
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb33
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb34
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb34
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb34
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb35
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb35
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb35
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb35
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb35
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb36
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb36
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb36
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb36
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb36
http://github.com/google/cluster-data/
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb38
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb38
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb38
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb40
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb40
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb40
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb40
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb40
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb41
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb41
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb41
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb41
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb41
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb42
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb42
http://refhub.elsevier.com/S1389-1286(22)00296-1/sb42

	RoNS: Robust network function services in clouds
	Introduction
	Goals and intuition
	Design goals
	Our intuition
	Problem statement
	System workflow

	NF instance allocation
	Multi-tenant cloud model
	Problem definition for NIT
	Algorithm design for NIT
	Performance analysis

	Tenant request scheduling
	Design of fast recovery
	Problem definition for TRS
	Algorithm design for TRS
	Performance analysis
	Dealing with failure of multiple NF instances

	Performance evaluation
	Performance metrics and benchmarks
	Performance metrics
	Benchmarks

	Simulation evaluation
	Simulation settings
	Simulation scenarios
	Performance comparison in Scenario (i)
	Performance comparison in Scenario (ii)

	Testbed evaluation
	Testbed settings
	NF instance performance
	Failure recovery performance
	Limited influence scope performance

	Related works
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

